z-logo
open-access-imgOpen Access
Discrimination and identification of periodic motion trajectories
Author(s) -
Charles C.-F. Or,
M. Thabet,
F. Wilkinson,
Hugh R. Wilson
Publication year - 2011
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/11.8.7
Subject(s) - trajectory , range (aeronautics) , motion (physics) , periodic function , identification (biology) , physics , function (biology) , acoustics , computer science , mathematics , artificial intelligence , mathematical analysis , engineering , biology , botany , astronomy , aerospace engineering , evolutionary biology
Humans are extremely sensitive to radial deformations of static circular contours (F. Wilkinson, H. R. Wilson, & C. Habak, 1998). Here, we investigate detection and identification of periodic motion trajectories defined by these radial frequency (RF) patterns over a range of radial frequencies of 2-5 cycles. We showed that the average detection thresholds for RF trajectories range from 1 to 4 min of arc and performance improves as a power-law function of radial frequency. RF trajectories are also detected for a range of speeds. We also showed that spatiotemporal global processing is involved in trajectory detection, as improvement in detection performance with increasing radial deformation displayed cannot be accounted for by local probability summation. Finally, identification of RF trajectories is possible over this RF range. Overall thresholds are about 6 times higher than previously reported for static stimuli. These novel stimuli should be a useful tool to investigate motion trajectory learning and discrimination in humans and other primates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom