Light fields and shape from shading
Author(s) -
Andrea J. van Doorn,
Jan J. Koenderink,
Johan Wagemans
Publication year - 2011
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/11.3.21
Subject(s) - shading , light field , computer science , point (geometry) , monotonic function , invariant (physics) , artificial intelligence , computer vision , mathematics , geometry , optics , physics , mathematical analysis , computer graphics (images) , mathematical physics
From a theoretical point of view, the use of the shading cue involves estimates of the light field and thus observers need to judge the light field and the shape simultaneously. The conventional stimulus in perceptual experiments, a circular disk filled with a monotonic gradient on a uniform surround, represents a local shading or tonal gradient. In typical scenes, such gradients vary smoothly from point to point over large areas, whereas light fields are globally defined and tend to be invariant over large parts of the scene. Hence, it is hardly surprising that multi-local shape estimates tend to synchronize although previous reports of such synchronies involved uniform, homogeneous light fields. Here, we consider more complicated and more realistic light fields. We present extensive, highly structured, quantitative observations using novel paradigms. Human observers are able to deal with some structured light fields but totally fail in others, even though these may be formally similar (like radial and circular fields). Observers respond very differently in some cases where the light fields differ only by sign, like converging and diverging fields. These results can be qualitatively understood on the basis of a few simple assumptions, mainly global top-down template matching of peripheral local data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom