z-logo
open-access-imgOpen Access
Decoding simulated neurodynamics predicts the perceptual consequences of age-related macular degeneration
Author(s) -
Jian Shi,
Jim Wielaard,
R. Theodore Smith,
Paul Sajda
Publication year - 2011
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/11.14.4
Subject(s) - macular degeneration , drusen , perception , computer science , visual perception , population , decoding methods , artificial intelligence , cognitive psychology , psychology , neuroscience , medicine , algorithm , environmental health , psychiatry
Age-related macular degeneration (AMD) is the major cause of blindness in the developed world. Though substantial work has been done to characterize the disease, it is difficult to predict how the state of an individual's retina will ultimately affect their high-level perceptual function. In this paper, we describe an approach that couples retinal imaging with computational neural modeling of early visual processing to generate quantitative predictions of an individual's visual perception. Using a patient population with mild to moderate AMD, we show that we are able to accurately predict subject-specific psychometric performance by decoding simulated neurodynamics that are a function of scotomas derived from an individual's fundus image. On the population level, we find that our approach maps the disease on the retina to a representation that is a substantially better predictor of high-level perceptual performance than traditional clinical metrics such as drusen density and coverage. In summary, our work identifies possible new metrics for evaluating the efficacy of treatments for AMD at the level of the expected changes in high-level visual perception and, in general, typifies how computational neural models can be used as a framework to characterize the perceptual consequences of early visual pathologies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom