z-logo
open-access-imgOpen Access
Eye movements and imitation learning: Intentional disruption of expectation
Author(s) -
J. Maryott,
Alastair Noyce,
Robert Sekuler
Publication year - 2011
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/11.1.7
Subject(s) - stimulus (psychology) , sequence learning , eye movement , psychology , communication , cognitive psychology , imitation , artificial intelligence , computer science , neuroscience
Over repeated viewings of motion along a quasi-random path, ability to reproduce that path from memory improves. To assess the role of expectations and sequence context on such learning, subjects eye movements were measured while trajectories were viewed for subsequent reproduction. As a sequence of motions was repeated, subjects' eye movements became anticipatory, leading the stimulus' motions. To investigate how prediction errors affected eye movements and imitation learning, we injected an occasional deviant motion into a well-learned stimulus sequence, violating subjects' expectation about the motion that would be seen. This unexpected direction of motion in the stimulus sequence did not impair reproduction of the sequence. The externally induced prediction errors promoted one-shot learning: During the very next stimulus presentation, their eye movements showed that subjects now expected the new sequence item to reappear. A second experiment showed that an associative mismatch can facilitate accurate reproduction of an unexpected stimulus. After a deviant sequence item was presented, imitation accuracy for sequences that contained the deviant direction of motion was reduced relative to sequences that restored the original direction of motions. These findings demonstrate that in the context of a familiar sequence, unexpected events can play an important role in learning the sequence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom