z-logo
open-access-imgOpen Access
Perceived glossiness and lightness under real-world illumination
Author(s) -
Maria Olkkonen,
David H. Brainard
Publication year - 2010
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/10.9.5
Subject(s) - specular reflection , luminance , gloss (optics) , specular highlight , lightness , mathematics , integrating sphere , contrast (vision) , optics , light field , component (thermodynamics) , computer vision , artificial intelligence , context (archaeology) , histogram , diffuse reflection , kurtosis , computer science , statistics , physics , geography , materials science , image (mathematics) , archaeology , composite material , thermodynamics , coating
Color, lightness, and glossiness are perceptual attributes associated with object reflectance. For these perceptual representations to be useful, they must correlate with physical reflectance properties of objects and not be overly affected by changes in illumination or viewing context. We employed a matching paradigm to investigate the perception of lightness and glossiness under geometric changes in illumination. Stimuli were computer simulations of spheres presented on a high-dynamic-range display. Observers adjusted the diffuse and specular reflectance components of a test sphere so that its appearance matched that of a reference sphere simulated under a different light field. Diffuse component matches were close to veridical across geometric changes in light field. In contrast, specular component matches were affected by geometric changes in light field. We tested several independence principles and found (i) that the effect of changing light field geometry on the diffuse component matches was independent of the reference sphere specular component; (ii) that the effect of changing light field geometry on the specular component matches was independent of the reference sphere diffuse component; and (iii) that diffuse and specular components of the match depended only slightly on the roughness of the specular component. Finally, we found that equating simple statistics (i.e., standard deviation, skewness, and kurtosis) computed from the luminance histograms of the spheres did not predict the matches: these statistics differed substantially between spheres that matched in appearance across geometric changes in the light field.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom