z-logo
open-access-imgOpen Access
Systematic distortions of perceived planar surface motion in active vision
Author(s) -
Carlo Fantoni,
Corrado Caudek,
Fulvio Domini
Publication year - 2010
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/10.5.12
Subject(s) - rotation (mathematics) , observer (physics) , computer vision , artificial intelligence , optical flow , motion perception , surface (topology) , perception , vestibular system , motion (physics) , computer science , physics , psychology , mathematics , geometry , neuroscience , quantum mechanics , image (mathematics)
Recent studies suggest that the active observer combines optic flow information with extra-retinal signals resulting from head motion. Such a combination allows, in principle, a correct discrimination of the presence or absence of surface rotation. In Experiments 1 and 2, observers were asked to perform such discrimination task while performing a lateral head shift. In Experiment 3, observers were shown the optic flow generated by their own movement with respect to a stationary planar slanted surface and were asked to classify perceived surface rotation as being small or large. We found that the perception of surface motion was systematically biased. We found that, in active, as well as in passive vision, perceived surface rotation was affected by the deformation component of the first-order optic flow, regardless of the actual surface rotation. We also found that the addition of a null disparity field increased the likelihood of perceiving surface rotation in active, but not in passive vision. Both these results suggest that vestibular information, provided by active vision, is not sufficient for veridical 3D shape and motion recovery from the optic flow

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom