z-logo
open-access-imgOpen Access
Estimating perception of scene layout properties from global image features
Author(s) -
Michael Ross,
Antonio Oliva
Publication year - 2010
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/10.1.2
Subject(s) - perspective (graphical) , computer science , perception , artificial intelligence , openness to experience , image (mathematics) , computer vision , property (philosophy) , simplicity , reliability (semiconductor) , resolution (logic) , psychology , social psychology , philosophy , power (physics) , physics , epistemology , quantum mechanics , neuroscience
The relationship between image features and scene structure is central to the study of human visual perception and computer vision, but many of the specifics of real-world layout perception remain unknown. We do not know which image features are relevant to perceiving layout properties, or whether those features provide the same information for every type of image. Furthermore, we do not know the spatial resolutions required for perceiving different properties. This paper describes an experiment and a computational model that provides new insights on these issues. Humans perceive the global spatial layout properties such as dominant depth, openness, and perspective, from a single image. This work describes an algorithm that reliably predicts human layout judgments. This model's predictions are general, not specific to the observers it trained on. Analysis reveals that the optimal spatial resolutions for determining layout vary with the content of the space and the property being estimated. Openness is best estimated at high resolution, depth is best estimated at medium resolution, and perspective is best estimated at low resolution. Given the reliability and simplicity of estimating the global layout of real-world environments, this model could help resolve perceptual ambiguities encountered by more detailed scene reconstruction schemas.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom