z-logo
open-access-imgOpen Access
Behavioral dynamics of steering, obstacle avoidance, and route selection
Author(s) -
William H. Warren,
Brett R. Fajen,
Donald Ray Belcher
Publication year - 2010
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/1.3.184
Subject(s) - heading (navigation) , obstacle , obstacle avoidance , computer science , simulation , control theory (sociology) , phase plane , artificial intelligence , computer vision , robot , mobile robot , engineering , control (management) , physics , aerospace engineering , nonlinear system , quantum mechanics , political science , law
The authors investigated the dynamics of steering and obstacle avoidance, with the aim of predicting routes through complex scenes. Participants walked in a virtual environment toward a goal (Experiment 1) and around an obstacle (Experiment 2) whose initial angle and distance varied. Goals and obstacles behave as attractors and repellers of heading, respectively, whose strengths depend on distance. The observed behavior was modeled as a dynamical system in which angular acceleration is a function of goal and obstacle angle and distance. By linearly combining terms for goals and obstacles, one could predict whether participants adopt a route to the left or right of an obstacle to reach a go (Experiment 3). Route selection may emerge from on-line steering dynamics, making explicit path planning unnecessary.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom