Forecasting Conditional Probabilities of Binary Outcomes under Misspecification
Author(s) -
Graham Elliott,
Dalia Ghanem,
Fabian Krüger
Publication year - 2016
Publication title -
the review of economics and statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.999
H-Index - 165
eISSN - 1530-9142
pISSN - 0034-6535
DOI - 10.1162/rest_a_00564
Subject(s) - scoring rule , binary number , parametric statistics , econometrics , decision rule , conditional probability , mathematics , computer science , statistics , arithmetic
We consider constructing probability forecasts from a parametric binary choice model under a large family of loss functions (“scoring rules”). Scoring rules are weighted averages over the utilities that heterogeneous decision makers derive from a publicly announced forecast (Schervish, 1989). Using analytical and numerical examples, we illustrate howdifferent scoring rules yield asymptotically identical results if the model is correctly specified. Under misspecification, the choice of scoring rule may be inconsequential under restrictive symmetry conditions on the data-generating process. If these conditions are violated, typically the choice of a scoring rule favors some decision makers over others.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom