z-logo
open-access-imgOpen Access
A Robust Deep Learning Segmentation Method for Hematoma Volumetric Detection in Intracerebral Hemorrhage
Author(s) -
Nannan Yu,
He Yu,
Haonan Li,
Nannan Ma,
Chunai Hu,
Jia Wang
Publication year - 2021
Publication title -
stroke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.397
H-Index - 319
eISSN - 1524-4628
pISSN - 0039-2499
DOI - 10.1161/strokeaha.120.032243
Subject(s) - medicine , hematoma , intracerebral hemorrhage , artificial intelligence , segmentation , stroke (engine) , deep learning , radiology , surgery , subarachnoid hemorrhage , computer science , mechanical engineering , engineering
Background and Purpose: Hematoma volume (HV) is a significant diagnosis for determining the clinical stage and therapeutic approach for intracerebral hemorrhage (ICH). The aim of this study is to develop a robust deep learning segmentation method for the fast and accurate HV analysis using computed tomography. Methods: A novel dimension reduction UNet (DR-UNet) model was developed for computed tomography image segmentation and HV measurement. Two data sets, 512 ICH patients with 12 568 computed tomography slices in the retrospective data set and 50 ICH patients with 1257 slices in the prospective data set, were used for network training, validation, and internal and external testing. Moreover, 13 irregular hematoma cases, 11 subdural and epidural hematoma cases, and 50 different HV cases into 3 groups ( 60 mL) were selected to further evaluate the robustness of DR-UNet. The image segmentation performance of DR-UNet was compared with those of UNet, the fuzzy clustering method, and the active contour method. The HV measurement performance was compared using DR-UNet, UNet, and the Coniglobus formula method. Results: Using DR-UNet, the segmentation model achieved a performance similar to that of expert clinicians in 2 independent test data sets containing internal testing data (Dice of 0.861±0.139) and external testing data (Dice of 0.874±0.130). The HV measurement derived from DR-UNet was strongly correlated with that from manual segmentation (R2 =0.9979;P <0.0001). In the irregularly shaped hematoma group and the subdural and epidural hematoma group, DR-UNet was more robust than UNet in both hematoma segmentation and HV measurement. There is no statistical significance in segmentation accuracy among 3 different HV groups.Conclusions: DR-UNet can segment hematomas from the computed tomography scans of ICH patients and quantify the HV with better accuracy and greater efficiency than the main existing methods and with similar performance to expert clinicians. Due to robust performance and stable segmentation on different ICHs, DR-UNet could facilitate the development of deep learning systems for a variety of clinical applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom