z-logo
open-access-imgOpen Access
Heterogeneity of Cerebral White Matter Lesions and Clinical Correlates in Older Adults
Author(s) -
KeunHwa Jung,
Kimberly A. Stephens,
Kathryn Morrison Yochim,
Joost M. Riphagen,
Chan Mi Kim,
Randy L. Buckner,
David H. Salat
Publication year - 2021
Publication title -
stroke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.397
H-Index - 319
eISSN - 1524-4628
pISSN - 0039-2499
DOI - 10.1161/strokeaha.120.031641
Subject(s) - medicine , white matter , lesion , contrast (vision) , hyperintensity , pathology , magnetic resonance imaging , radiology , artificial intelligence , computer science
Background and Purpose: Cerebral white matter signal abnormalities (WMSAs) are a significant radiological marker associated with brain and vascular aging. However, understanding their clinical impact is limited because of their pathobiological heterogeneity. We determined whether use of robust reliable automated procedures can distinguish WMSA classes with different clinical consequences. Methods: Data from generally healthy participants aged >50 years with moderate or greater WMSA were selected from the Human Connectome Project-Aging (n=130). WMSAs were segmented on T1 imaging. Features extracted from WMSA included total and regional volume, number of discontinuous clusters, size of noncontiguous lesion, contrast of lesion intensity relative to surrounding normal appearing tissue using a fully automated procedure. Hierarchical clustering was used to classify individuals into distinct classes of WMSA. Radiological and clinical variability was evaluated across the individual WMSA classes. Results: Class I was characterized by multiple, small, lower-contrast lesions predominantly in the deep WM; class II by large, confluent lesions in the periventricular WM; and class III by higher-contrast lesions restricted to the juxtaventricular WM. Class II was associated with lower myelin content than the other 2 classes. Class II was more prevalent in older subjects and was associated with a higher prevalence of hypertension and lower physical activity levels. Poor sleep quality was associated with a greater risk of class I. Conclusions: We classified heterogeneous subsets of cerebral white matter lesions into distinct classes that have different clinical risk factors. This new method for identifying classes of WMSA will be important in understanding the underlying pathophysiology and in determining the impact on clinical outcomes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom