Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning
Author(s) -
Gianluca Brugnara,
Ulf Neuberger,
Mustafa Ahmed Mahmutoglu,
Martha Foltyn,
Christian Herweh,
Simon Nagel,
Silvia Schönenberger,
Sabine Heiland,
Christian Ulfert,
Peter A. Ringleb,
Martin Bendszus,
Markus Möhlenbruch,
Johannes Pfaff,
Philipp Kickingereder
Publication year - 2020
Publication title -
stroke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.397
H-Index - 319
eISSN - 1524-4628
pISSN - 0039-2499
DOI - 10.1161/strokeaha.120.030287
Subject(s) - medicine , endovascular treatment , stroke (engine) , ischemic stroke , acute stroke , cardiology , surgery , ischemia , aneurysm , tissue plasminogen activator , engineering , mechanical engineering
Background and Purpose: This study assessed the predictive performance and relative importance of clinical, multimodal imaging, and angiographic characteristics for predicting the clinical outcome of endovascular treatment for acute ischemic stroke. Methods: A consecutive series of 246 patients with acute ischemic stroke and large vessel occlusion in the anterior circulation who underwent endovascular treatment between April 2014 and January 2018 was analyzed. Clinical, conventional imaging (electronic Alberta Stroke Program Early CT Score, acute ischemic volume, site of vessel occlusion, and collateral score), and advanced imaging characteristics (CT-perfusion with quantification of ischemic penumbra and infarct core volumes) before treatment as well as angiographic (interval groin puncture-recanalization, modified Thrombolysis in Cerebral Infarction score) and postinterventional clinical (National Institutes of Health Stroke Scale score after 24 hours) and imaging characteristics (electronic Alberta Stroke Program Early CT Score, final infarction volume after 18–36 hours) were assessed. The modified Rankin Scale (mRS) score at 90 days (mRS-90) was used to measure patient outcome (favorable outcome: mRS-90 ≤2 versus unfavorable outcome: mRS-90 >2). Machine-learning with gradient boosting classifiers was used to assess the performance and relative importance of the extracted characteristics for predicting mRS-90. Results: Baseline clinical and conventional imaging characteristics predicted mRS-90 with an area under the receiver operating characteristics curve of 0.740 (95% CI, 0.733–0.747) and an accuracy of 0.711 (95% CI, 0.705–0.717). Advanced imaging with CT-perfusion did not improved the predictive performance (area under the receiver operating characteristics curve, 0.747 [95% CI, 0.740–0.755]; accuracy, 0.720 [95% CI, 0.714–0.727];P =0.150). Further inclusion of angiographic and postinterventional characteristics significantly improved the predictive performance (area under the receiver operating characteristics curve, 0.856 [95% CI, 0.850–0.861]; accuracy, 0.804 [95% CI, 0.799–0.810];P <0.001). The most important parameters for predicting mRS 90 were National Institutes of Health Stroke Scale score after 24 hours (importance =100%), premorbid mRS score (importance =44%) and final infarction volume on postinterventional CT after 18 to 36 hours (importance =32%).Conclusions: Integrative assessment of clinical, multimodal imaging, and angiographic characteristics with machine-learning allowed to accurately predict the clinical outcome following endovascular treatment for acute ischemic stroke. Thereby, premorbid mRS was the most important clinical predictor for mRS-90, and the final infarction volume was the most important imaging predictor, while the extent of hemodynamic impairment on CT-perfusion before treatment had limited importance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom