z-logo
open-access-imgOpen Access
Novel Acute Retinal Artery Ischemia and Reperfusion Model in Nonhuman Primates
Author(s) -
Yuan Gao,
Di Wu,
Dachuan Liu,
Mitchell Huber,
Jian Chen,
Xizhe Wang,
Kui Lv,
Xiaodu He,
Huiqing Yang,
Chang­hong Ren,
Yuchuan Ding,
Xunming Ji,
Xuxiang Zhang
Publication year - 2020
Publication title -
stroke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.397
H-Index - 319
eISSN - 1524-4628
pISSN - 0039-2499
DOI - 10.1161/strokeaha.119.028809
Subject(s) - medicine , ischemia , stroke (engine) , retinal , cardiology , ophthalmology , mechanical engineering , engineering
Background and Purpose: The retina, as an externally located neural tissue, offers unique advantages in investigating the effect of therapeutic intervention on the brain. In this study, we put forth a clinically relevant model of retinal ischemia and reperfusion in nonhuman primates. Methods: Acute retinal artery ischemia and reperfusion was induced by injecting an autologous clot into the ophthalmic artery of adult rhesus monkeys, and recanalization was achieved by focal thrombolysis with tPA (tissue-type plasminogen activator). Digital subtraction angiography and fluorescein angiography were used to evaluate blood flow in the retina and the choroid. Electroretinogram, optical coherence tomography, and hematoxylin and eosin staining were used to evaluate the structure and function of the retina after ischemia. Results: Digital subtraction angiography and fluorescein angiography images confirmed occlusion of the ophthalmic and central retinal arteries, as well as recanalization after tPA thrombolysis. Electroretinogram indicated retinal functional damage following ischemia, and thrombolysis partially rescued its impairment. Optical coherence tomography and hematoxylin and eosin staining revealed ischemia-induced changes in the retina, and tPA partially mitigated these damages. Conclusions: This novel acute retinal artery ischemia and reperfusion model in rhesus monkeys may closely simulate retinal ischemia/reperfusion in clinical practice and provide an optimal platform for screening neuroprotective strategies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom