Intraventricular Hemorrhage Clearance in Human Neonatal Cerebrospinal Fluid
Author(s) -
Kelly B. Mahaney,
Chandana Buddhala,
Mounica Paturu,
Diego M. Morales,
David D. Limbrick,
Jennifer M. Strahle
Publication year - 2020
Publication title -
stroke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.397
H-Index - 319
eISSN - 1524-4628
pISSN - 0039-2499
DOI - 10.1161/strokeaha.119.028744
Subject(s) - medicine , cerebrospinal fluid , intraventricular hemorrhage , anesthesia , pathology , pregnancy , gestational age , genetics , biology
Background and Purpose— Preterm neonates with intraventricular hemorrhage (IVH) are at risk for posthemorrhagic hydrocephalus and poor neurological outcomes. Iron has been implicated in ventriculomegaly, hippocampal injury, and poor outcomes following IVH. We hypothesized that levels of cerebrospinal fluid blood breakdown products and endogenous iron clearance proteins in neonates with IVH differ from those of neonates with IVH who subsequently develop posthemorrhagic hydrocephalus. Methods— Premature neonates with an estimated gestational age at birth <30 weeks who underwent lumbar puncture for clinical evaluation an average of 2 weeks after birth were evaluated. Groups consisted of controls (n=16), low-grade IVH (grades I–II; n=4), high-grade IVH (grades III–IV; n=6), and posthemorrhagic hydrocephalus (n=9). Control subjects were preterm neonates born at <30 weeks’ gestation without brain abnormality or hemorrhage on cranial ultrasound, who underwent lumbar puncture for clinical purposes. Cerebrospinal fluid hemoglobin, total bilirubin, total iron, ferritin, ceruloplasmin, transferrin, haptoglobin, and hemopexin were quantified. Results— Cerebrospinal fluid hemoglobin levels were increased in posthemorrhagic hydrocephalus compared with high-grade IVH (9.45 versus 6.06 µg/mL,P <0.05) and cerebrospinal fluid ferritin levels were increased in posthemorrhagic hydrocephalus compared with controls (511.33 versus 67.08,P <0.01). No significant group differences existed for the other cerebrospinal fluid blood breakdown and iron-handling proteins tested. We observed positive correlations between ventricular enlargement (frontal occipital horn ratio) and ferritin (Pearsonr =0.67), hemoglobin (Pearsonr =0.68), and total bilirubin (Pearsonr =0.69).Conclusions— Neonates with posthemorrhagic hydrocephalus had significantly higher levels of hemoglobin than those with high-grade IVH. Levels of blood breakdown products, hemoglobin, ferritin, and bilirubin correlated with ventricular size. There was no elevation of several iron-scavenging proteins in cerebrospinal fluid in neonates with posthemorrhagic hydrocpehalus, indicative of posthemorrhagic hydrocephalus as a disease state occurring when endogenous iron clearance mechanisms are overwhelmed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom