z-logo
open-access-imgOpen Access
1/2SH
Author(s) -
Biao Zhao,
Wan-bing Jia,
Liying Zhang,
Tingzhong Wang
Publication year - 2019
Publication title -
stroke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.397
H-Index - 319
eISSN - 1524-4628
pISSN - 0039-2499
DOI - 10.1161/strokeaha.119.026951
Subject(s) - medicine , intraclass correlation , hematoma , nuclear medicine , intracerebral hemorrhage , concordance correlation coefficient , correlation coefficient , concordance , volume (thermodynamics) , radiology , surgery , statistics , mathematics , glasgow coma scale , physics , quantum mechanics , psychometrics , clinical psychology
Background and Purpose— 1/2ABC has been used widely for assessing the volume of intracerebral hematoma. However, it is only suitable for calculating regular and small volume hematomas. Therefore, we re-explored the formula of hematoma volume to find a method that can calculate hematoma volumes accurately, reliably, and quickly. Methods— Computed tomography imaging data of 257 patients with intracerebral hemorrhage were collected. Hematoma volumes were estimated using 3-dimensional Slicer and 7 formulas (π/6ABC, 1/2ABC, 1/3ABC, 2/3SH, 1/2SH, π/6SH, and 2.5/6ABC). Taking the hematoma volumes measured by 3-dimensional Slicer as the reference standard, the accuracy and reliability of the 7 formulas were evaluated. Furthermore, the time needed to calculate hematoma volumes by the 1/2SH method was noted for further analysis. Results— (1) The accuracy of the 7 formulas based on the error analysis from the highest to the lowest was: π/6SH, 1/2SH, 2.5/6ABC, 1/3ABC, 1/2ABC, and π/6ABC or 2/3SH. According to concordance analysis and receiver operating characteristic curve analysis, the results from the highest to lowest were as follows: 1/2SH, π/6SH, 2.5/6ABC, 1/3ABC, 1/2ABC, 2/3SH, and π/6ABC. After categorizing cases according to size, shape, and location of hematoma, the results were almost the same as the results for overall accuracy evaluation in any subgroup. (2) Intraclass correlation coefficient (ICC) of 1/2SH in intra and inter-researcher were 0.998 and 0.989, respectively. For the formula π/6SH, intraclass correlation coefficient was the same as that of 1/2ABC. Kappa values of 1/2SH for intra- and inter-observer were 0.992 and 0.913, respectively. For π/6SH, kappa values of within- and between-reader were 0.984 and 0.904, respectively. (3) The average time taken to calculate hematoma volumes by 1/2SH was 74 seconds. Conclusions— The 1/2SH and π/6SH are accurate, reliable, and rapid methods for calculating hematoma volumes. The accuracy and reliability of 1/2SH were slightly higher than those of π/6SH.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom