z-logo
open-access-imgOpen Access
Transient Focal Ischemia Significantly Alters the m 6 A Epitranscriptomic Tagging of RNAs in the Brain
Author(s) -
Anil K. Chokkalla,
Suresh L. Mehta,
TaeHee Kim,
Bharath Chelluboina,
Jooyong Kim,
Raghu Vemuganti
Publication year - 2019
Publication title -
stroke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.397
H-Index - 319
eISSN - 1524-4628
pISSN - 0039-2499
DOI - 10.1161/strokeaha.119.026433
Subject(s) - transcriptome , methylation , microrna , medicine , microarray , ischemia , messenger rna , gene expression , brain ischemia , downregulation and upregulation , microarray analysis techniques , andrology , microbiology and biotechnology , endocrinology , biology , gene , biochemistry
Background and Purpose- Adenosine in many types of RNAs can be converted to m 6 A (N 6 -methyladenosine) which is a highly dynamic epitranscriptomic modification that regulates RNA metabolism and function. Of all organs, the brain shows the highest abundance of m 6 A methylation of RNAs. As recent studies showed that m 6 A modification promotes cell survival after adverse conditions, we currently evaluated the effect of stroke on cerebral m 6 A methylation in mRNAs and lncRNAs. Methods- Adult C57BL/6J mice were subjected to transient middle cerebral artery occlusion. In the peri-infarct cortex, m 6 A levels were measured by dot blot analysis, and transcriptome-wide m 6 A changes were profiled using immunoprecipitated methylated RNAs with microarrays (44 122 mRNAs and 12 496 lncRNAs). Gene ontology analysis was conducted to understand the functional implications of m 6 A changes after stroke. Expression of m 6 A writers, readers, and erasers was also estimated in the ischemic brain. Results- Global m 6 A levels increased significantly at 12 hours and 24 hours of reperfusion compared with sham. While 139 transcripts (122 mRNAs and 17 lncRNAs) were hypermethylated, 8 transcripts (5 mRNAs and 3 lncRNAs) were hypomethylated (>5-fold compared with sham) in the ischemic brain at 12 hours reperfusion. Inflammation, apoptosis, and transcriptional regulation are the major biological processes modulated by the poststroke differentially m 6 A methylated mRNAs. The m 6 A writers were unaltered, but the m 6 A eraser (fat mass and obesity-associated protein) decreased significantly after stroke compared with sham. Conclusions- This is the first study to show that stroke alters the cerebral m 6 A epitranscriptome, which might have functional implications in poststroke pathophysiology. Visual Overview- An online visual overview is available for this article.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom