Bosutinib Attenuates Inflammation via Inhibiting Salt-Inducible Kinases in Experimental Model of Intracerebral Hemorrhage on Mice
Author(s) -
Li Ma,
Anatol Manaenko,
Yibo Ou,
Anwen Shao,
Shuxu Yang,
John H. Zhang
Publication year - 2017
Publication title -
stroke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.397
H-Index - 319
eISSN - 1524-4628
pISSN - 0039-2499
DOI - 10.1161/strokeaha.117.017681
Subject(s) - medicine , intracerebral hemorrhage , inflammation , kinase , bosutinib , pharmacology , stroke (engine) , anesthesia , immunology , dasatinib , microbiology and biotechnology , tyrosine kinase , receptor , subarachnoid hemorrhage , mechanical engineering , engineering , biology
Background and Purpose— Intracerebral hemorrhage (ICH) is a subtype of stroke with highest mortality and morbidity. Pronounced inflammation plays a significant role in the development of the secondary brain injury after ICH. Recently, SIK-2 (salt-inducible kinase-2) was identified as an important component controlling inflammatory response. Here we sought to investigate the role of SIK-2 in post-ICH inflammation and potential protective effects of SIK-2 inhibition after ICH. Methods— Two hundred and ninety-three male CD-1 mice were used. ICH was induced via injection of 30 μL of autologous blood. Recombinant SIK-2 was administrated 1 hour after ICH intracerebroventricularly. SIK-2 small interfering RNA was injected intracerebroventricularly 24 hours before ICH. Bosutinib, a clinically approved tyrosine kinase inhibitor with affinity to SIK-2, was given intranasally 1 hour or 6 hours after ICH. Effects of treatments were evaluated by neurological tests and brain water content calculation. Molecular pathways were investigated by Western blots and immunofluorescence studies. Results— Endogenous SIK-2 was expressed in microglia and neurons. SIK-2 expression was reduced after ICH. Exogenous SIK-2 aggravated post-ICH inflammation, leading to brain edema and the neurobehavioral deficits. SIK-2 inhibition attenuated post-ICH inflammation, reducing brain edema and ameliorating neurological dysfunctions. Bosutinib inhibited SIK-2–attenuating ICH-induced brain damage. Protective effects of Bosutinib were mediated, at least partly, by CRTC3 (cyclic amp-response element binding protein-regulated transcription coactivator 3)/cyclic amp-response element binding protein/NF-κB (nuclear factor-κB) pathway. Conclusions— SIK-2 participates in inflammation induction after ICH. SIK-2 inhibition via Bosutinib or small interfering RNA decreased inflammation, attenuating brain injury. SIK-2 effects are, at least partly, mediated by CRTC3-cyclic amp-response element binding protein-NF-κB signaling pathway.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom