z-logo
open-access-imgOpen Access
Thromboinflammation in Stroke Brain Damage
Author(s) -
Simon F. De Meyer,
Frederik Denorme,
Friederike Langhauser,
Eva Geuß,
Felix Fluri,
Christoph Kleinschnitz
Publication year - 2016
Publication title -
stroke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.397
H-Index - 319
eISSN - 1524-4628
pISSN - 0039-2499
DOI - 10.1161/strokeaha.115.011238
Subject(s) - medicine , neurology , stroke (engine) , physics , psychiatry , thermodynamics
The main goal of ischemic stroke treatment is rapid recanalization of the occluded blood vessel to limit brain injury and to salvage threatened cerebral tissue. To achieve early vessel recanalization, thrombolysis using recombinant tissue-type plasminogen activator is currently the only approved pharmacological intervention. Only recently, endovascular therapy has made its way into the clinic extending the therapeutic time-window and increasing reperfusion rates. However, despite fast restoration of blood vessel patency, progressive stroke still develops in many patients, which has led to the concept of reperfusion injury. During the past decades, many studies have been addressing the mechanisms underlying ischemic stroke damage and cerebral reperfusion injury, but the picture remains far from complete.1 It has become clear that both thrombotic and inflammatory pathways are important pathophysiologic contributors to ischemic brain damage. At ischemic vascular lesions, blood platelets adhere and become activated, increasing the risk of secondary thrombotic events.2 At the same time, cerebral ischemia elicits a strong inflammatory response involving upregulation of cell adhesion molecules and cytokines as well as adhesion, activation, and transmigration of several subsets of leukocytes.3 Interestingly, emerging insights indicate an important link between these thrombotic and inflammatory pathways in stroke, which led to the concept of thromboinflammation in stroke pathology. In this review, we focus on recently discovered thromboinflammatory pathways of ischemic stroke and discuss the clinical potential of targeting thromboinflammation as a novel treatment strategy in stroke management. An overview of the key components is given in Tables I to III in the online-only Data Supplement.Collagen, von Willebrand factor (vWF), and platelet glycoprotein (GP) Ib together form an important axis that is crucial for initial platelet adhesion at sites of vascular injury.4 On exposure of the subendothelial matrix, platelets are able to adhere to exposed collagen via their collagen receptors GP …

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom