z-logo
open-access-imgOpen Access
Inhibition of WNK3 Kinase Signaling Reduces Brain Damage and Accelerates Neurological Recovery After Stroke
Author(s) -
Gulnaz Begum,
Hui Yuan,
Kristopher T. Kahle,
Liaoliao Li,
Shaoxia Wang,
Yejie Shi,
Boris E. Shmukler,
SungSen Yang,
ShihHua Lin,
Seth L. Alper,
Dandan Sun
Publication year - 2015
Publication title -
stroke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.397
H-Index - 319
eISSN - 1524-4628
pISSN - 0039-2499
DOI - 10.1161/strokeaha.115.008939
Subject(s) - medicine , stroke (engine) , kinase , stroke recovery , neuroscience , microbiology and biotechnology , physical therapy , rehabilitation , biology , mechanical engineering , engineering
Background and Purpose— WNK kinases, including WNK3, and the associated downstream Ste20/SPS1-related proline-alanine–rich protein kinase (SPAK) and oxidative stress responsive 1 (OSR1) kinases, comprise an important signaling cascade that regulates the cation-chloride cotransporters. Ischemia-induced stimulation of the bumetanide-sensitive Na+ -K+ -Cl− cotransporter (NKCC1) plays an important role in the pathophysiology of experimental stroke, but the mechanism of its regulation in this context is unknown. Here, we investigated the WNK3-SPAK/OSR1 pathway as a regulator of NKCC1 stimulation and their collective role in ischemic brain damage.Method— Wild-typeWNK3 andWNK3 knockout mice were subjected to ischemic stroke via transient middle cerebral artery occlusion. Infarct volume, brain edema, blood brain barrier damage, white matter demyelination, and neurological deficits were assessed. Total and phosphorylated forms of WNK3 and SPAK/OSR1 were assayed by immunoblotting and immunostaining. In vitro ischemia studies in cultured neurons and immature oligodendrocytes were conducted using the oxygen-glucose deprivation/reoxygenation method.Results— WNK3 knockout mice exhibited significantly decreased infarct volume and axonal demyelination, less cerebral edema, and accelerated neurobehavioral recovery compared with WNK3 wild-type mice subjected to middle cerebral artery occlusion. The neuroprotective phenotypes conferred by WNK3 knockout were associated with a decrease in stimulatory hyperphosphorylations of the SPAK/OSR1 catalytic T-loop and of NKCC1 stimulatory sites Thr203 /Thr207 /Thr212 , as well as with decreased cell surface expression of NKCC1. Genetic inhibition of WNK3 or small interfering RNA knockdown of SPAK/OSR1 increased the tolerance of cultured primary neurons and oligodendrocytes to in vitro ischemia.Conclusions— These data identify a novel role for the WNK3-SPAK/OSR1-NKCC1 signaling pathway in ischemic neuroglial injury and suggest the WNK3-SPAK/OSR1 kinase pathway as a therapeutic target for neuroprotection after ischemic stroke.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom