Roles of Glia Limitans Astrocytes and Carbon Monoxide in Adenosine Diphosphate-Induced Pial Arteriolar Dilation in Newborn Pigs
Author(s) -
Alie Kanu,
Charles W. Leffler
Publication year - 2009
Publication title -
stroke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.397
H-Index - 319
eISSN - 1524-4628
pISSN - 0039-2499
DOI - 10.1161/strokeaha.108.533786
Subject(s) - medicine , adenosine , carbon monoxide , adenosine diphosphate , cardiology , platelet , biochemistry , platelet aggregation , biology , catalysis
Astrocytes, neurons, and microvessels together form a neurovascular unit allowing blood flow to match neuronal activity. Adenosine diphosphate (ADP) is an important signaling molecule in the brain, and dilation in response to ADP is astrocyte-dependent in rats and newborn pigs. Carbon monoxide (CO), produced endogenously by catabolism of heme to CO, iron, and biliverdin via heme oxygenase, is an important cell-signaling molecule in the neonatal cerebral circulation. We hypothesize ADP stimulates CO production by glia limitans astrocytes and that this CO causes pial arteriolar dilation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom