z-logo
open-access-imgOpen Access
Nitric Oxide and Central Antihypertensive Drugs
Author(s) -
Guata Yoro Sy,
Véronique Bruban,
Pascal Bousquet,
Josiane Feldman
Publication year - 2001
Publication title -
hypertension
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.986
H-Index - 265
eISSN - 1524-4563
pISSN - 0194-911X
DOI - 10.1161/01.hyp.37.2.246
Subject(s) - rilmenidine , clonidine , imidazoline receptor , bradycardia , endocrinology , norepinephrine , medicine , pharmacology , yohimbine , chemistry , antagonist , agonist , blood pressure , heart rate , receptor , dopamine
NO is known to be involved in the peripheral and central regulation of the cardiovascular function. It plays a neuromodulatory role via a direct action on presynaptic nerve terminals, stimulating the release of gamma-aminobutyric acid, glutamate, and norepinephrine. Our aim was to study the possible role of NO in the cardiovascular effects of the central antihypertensive drugs clonidine, rilmenidine, and alpha-methyl-norepinephrine (alpha-MNA). Sites and mechanisms of the hypotensive action of these drugs were different; clonidine and rilmenidine acted on imidazoline receptors in the nucleus reticularis lateralis, whereas alpha-MNA acted upon alpha(2)-adrenoceptors in the nucleus tractus solitarius. The influence of N:(G)-nitro-L-arginine, an NO synthase inhibitor, on the central hypotensive effects of these drugs was investigated in pentobarbital-anesthetized rabbits. The intracisternal (IC) administration of alpha-MNA (30 microg/kg) induced hypotension (79+/-2 versus 103+/-4 mm Hg) and bradycardia (222+/-8 versus 278+/-4 bpm) (P:<0.05) (n=5). Clonidine (0.07 microg/kg IC) also induced hypotension (69+/-5 versus 99+/-4 mm Hg) and bradycardia (266+/-7 versus 306+/-10 bpm) (P:<0.05) (n=5). In addition to clonidine, rilmenidine (1 microg/kg IC) induced hypotension (64+/-4 versus 97+/-4 mm Hg) and bradycardia (264+/-11 versus 310+/-4 bpm) (P:<0.05) (n=5). Pretreatment with N:(G)-nitro-L-arginine (900 microg/kg IC) completely prevented the hypotensive effect of alpha-MNA but influenced the cardiovascular effects of neither clonidine nor rilmenidine. These results confirm that imidazoline drugs, such as clonidine, rilmenidine, and the catecholamine alpha(2)-adrenoceptor agonist alpha-MNA, have distinct mechanisms of action.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom