z-logo
open-access-imgOpen Access
Short-term effects of angiotensin II blockade on renal blood flow and sympathetic activity in awake rats.
Author(s) -
Shuichi Takishita,
H. Muratani,
S Sesoko,
Hiroshi Teruya,
Masahiko Tozawa,
Koshiro Fukiyama,
Y. Inada
Publication year - 1994
Publication title -
hypertension
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.986
H-Index - 265
eISSN - 1524-4563
pISSN - 0194-911X
DOI - 10.1161/01.hyp.24.4.445
Subject(s) - nicardipine , renal blood flow , medicine , blood pressure , endocrinology , vascular resistance , denervation , renal circulation , kidney , angiotensin ii , plasma renin activity , mean arterial pressure , renal function , blood flow , heart rate , renin–angiotensin system
To investigate the effects of an angiotensin II type 1 receptor antagonist (CV-11974) on renal blood flow and renal sympathetic nerve activity compared with a calcium antagonist (nicardipine), we measured both parameters in conscious spontaneously hypertensive rats aged 13 to 15 weeks. One to 2 days after surgery, CV-11974 (n = 9) and nicardipine (n = 8) were intravenously administered to decrease arterial pressure in a similar time course and degree of hypotension. CV-11974 increased renal blood flow by 23 +/- 4% at the maximal fall in mean arterial pressure (-32 +/- 1 mm Hg), and renal nerve activity increased by 70 +/- 7%. The maximal increase in renal blood flow (+27 +/- 4%) was observed when mean pressure was reduced by approximately 20 mm Hg. The maximal reduction of renal vascular resistance (-33 +/- 3%) correlated significantly with pretreatment levels of plasma renin concentration (r = -.792). In contrast, nicardipine produced a progressive reduction of renal blood flow and marked increases in heart rate and renal nerve activity. Increases in heart rate and nerve activity were greater than those with CV-11974 treatment (P < .001). At the maximal fall in mean pressure (-32 +/- 1 mm Hg), renal blood flow decreased by 23 +/- 4%, which was significantly correlated with percent changes in renal nerve activity (+150 +/- 11%, r = -.744). Renal denervation in another set of rats (n = 6) improved renal blood flow and renal vascular resistance responses to nicardipine.(ABSTRACT TRUNCATED AT 250 WORDS)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom