z-logo
open-access-imgOpen Access
Neutrophil oxidants inactivate alpha-1-protease inhibitor and promote PMN-mediated detachment of cultured endothelium. Protection by free methionine.
Author(s) -
DF Stroncek,
Gregory M. Vercellotti,
Pil Woo Huh,
Harry S. Jacob
Publication year - 1986
Publication title -
arteriosclerosis
Language(s) - English
Resource type - Journals
eISSN - 2330-9180
pISSN - 0276-5047
DOI - 10.1161/01.atv.6.3.332
Subject(s) - elastase , cathepsin g , myeloperoxidase , endothelial stem cell , neutrophil elastase , chemistry , endothelium , biochemistry , serine protease , pancreatic elastase , granulocyte , microbiology and biotechnology , immunology , biology , protease , enzyme , inflammation , endocrinology , in vitro
Activated granulocytes have been implicated in mediating pulmonary endothelial damage in the Adult Respiratory Distress Syndrome. In another lung disease, emphysema, pulmonary granulocytes (PMNs) are thought to be doubly responsible for lung dissolution: they release potent proteolytic enzymes including elastase, and they generate reactive oxygen species that oxidize a reactive site methionine group in alpha-1-protease inhibitor (alpha-1-PI) rendering it, in turn, impotent as an anti-elastase. This suggested an analogous scenario for pulmonary vascular damage: namely, undefended PMN elastase might also mediate endothelial injury. Our strategy to prove this notion used 51chromium-labeled human endothelial cells exposed to intact PMN or to enucleate "neutroplasts." The latter are elastase-free cytoplasmic blebs derived from PMN. When activated, both PMN and neutroplasts generate similar amounts of toxic oxygen species; yet neutroplasts caused insignificant endothelial damage, measured as 51Cr "lift-off"from anchoring matrix (PMN = 24.3% +/- 1.8% vs neutroplast = 1.2% +/- 0.4%; p less than 0.001). Adding pure elastase back to neutroplasts increased endothelial cell lift-off (7% +/- 0.2%). Although the prototypic serine protease inhibitor phenyl methylsulfonylfluoride (PMSF) protected endothelium from PMNs, pure alpha-1-PI (also a potent anti-elastase) when added in physiologic amounts did not protect endothelial cells from PMN assault, suggesting that PMN oxidants might inactivate it. By adding exogenous myeloperoxidase (MPO) to MPO-deficient neutroplasts, we demonstrated that MPO-dependent oxidants, probably N-chloramines, are critical inactivators of alpha-1-PI. This was further confirmed since added free methionine, a scavenger of chloramine, protected alpha-1-PI from inactivation by reagent chloramine or that produced by rearmed neutroplasts or PMN.(ABSTRACT TRUNCATED AT 250 WORDS)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here