z-logo
open-access-imgOpen Access
The Proinflammatory Potential of Nitrogen Dioxide and Its Influence on the House Dust Mite Allergen Der p 1
Author(s) -
Christian Koehler,
Michael J. Paulus,
Christian Ginzkey,
Stephan Hackenberg,
Agmal Scherzad,
Pascal Ickrath,
Rudolf Hagen,
N. Kleinsasser
Publication year - 2016
Publication title -
international archives of allergy and immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.696
H-Index - 100
eISSN - 1423-0097
pISSN - 1018-2438
DOI - 10.1159/000450751
Subject(s) - house dust mite , immunology , allergen , proinflammatory cytokine , allergy , mucous membrane of nose , interleukin 8 , chemistry , in vitro , asthma , mite , interleukin , medicine , cytokine , inflammation , biology , biochemistry , ecology
Asthma and allergies are both major global health problems with an increasing prevalence, and environmental data implicate an influence of air pollutants on their development. The present study focuses on the influence of nitrogen dioxide (NO2) and the major allergen of the house dust mite Der p 1 on human nasal epithelial cells of nonallergic patients in vitro. Nasal epithelial mucosa samples of 11 donors were harvested during nasal air passage surgery and cultured as an air-liquid interface. Exposure to 0.1, 1 and 10 ppm NO2 or synthetic air as a control was performed for 1 h. Subsequently, the cells were exposed to Der p 1 for 24 h. The release of interleukin (IL)-6 and IL-8 was measured by ELISA, and the production of IL-6 mRNA and IL-8 mRNA was measured by RT-PCR. NO2 exposure resulted in a concentration-dependent release of IL-6, but not IL-8 release. The coexposure of 0.1 ppm NO2 and Der p 1, or 1 ppm NO2 and Der p 1 significantly increased both IL-6 and IL-8 release. Exposure to NO2, Der p 1, or their combination, did not significantly influence the production of IL-6 or IL-8 mRNA. In conclusion, NO2 increases the release of inflammatory cytokines in human nasal epithelial cells, especially in coexposure with Der p 1, as a mechanism of allergotoxicology.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom