Hydrogen Sulfide and T-Type Ca<sup>2+</sup> Channels in Pain Processing, Neuronal Differentiation and Neuroendocrine Secretion
Author(s) -
Kazuki Fukami,
Fumiko Sekiguchi,
Atsufumi Kawabata
Publication year - 2016
Publication title -
pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 59
eISSN - 1423-0313
pISSN - 0031-7012
DOI - 10.1159/000449449
Subject(s) - cystathionine beta synthase , chemistry , endocrinology , medicine , cysteine , microbiology and biotechnology , enzyme , biology , biochemistry
Hydrogen sulfide (H2S), a gasotransmitter, is generated from L-cysteine by mainly 3 enzymes, cystathionine-γ-lyase (CSE), cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase in cooperation with cysteine aminotransferase. The H2S-forming enzymes, particularly CSE, are overexpressed under the pathological conditions such as inflammation, neuronal or neuroendocrine differentiation and cancer development. Given that Cav3.2 T-type Ca2+ channels mediate some of the biological activity of H2S, we focus on the role of the H2S/Cav3.2 pathway in regulating the neuronal and neuroendocrine function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom