Menthol Modulates Pacemaker Potentials through TRPA1 Channels in Cultured Interstitial Cells of Cajal from Murine Small Intestine
Author(s) -
Kim Hyun Jung,
Wie Jinhong,
So Insuk,
Jung Myeong Ho,
Ha Ki-Tae,
Kim Byung Joo
Publication year - 2016
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000445549
Subject(s) - original paper
Background/Aims: ICCs are the pacemaker cells responsible for slow waves in gastrointestinal (GI) smooth muscle, and generate periodic pacemaker potentials in current-clamp mode. Methods: The effects of menthol on the pacemaker potentials of cultured interstitial cells of Cajal (ICCs) from mouse small intestine were studied using the whole cell patch clamp technique. Results: Menthol (1 - 10 μM) was found to induce membrane potential depolarization in a concentration-dependent manner. The effects of various TRP channel antagonists were examined to investigate the receptors involved. The addition of the TRPM8 antagonist, AMTB, did not block menthol-induced membrane potential depolarizations, but TRPA1 antagonists (A967079 or HC-030031) blocked the effects of menthol, as did intracellular GDP β S. Furthermore, external and internal Ca 2+ levels were found to depolarize menthol-induced membrane potentials, whereas external Na + was not. Y-27632 (a Rho kinase inhibitor), SC-560 (a selective COX 1 inhibitor), NS-398 (a selective COX 2 inhibitor), ozagrel (a thromboxane A2 synthase inhibitor) and SQ-29548 (highly selective thromboxane receptor antagonist) were used to investigate the involvements of Rho-kinase, cyclooxygenase (COX), and the thromboxane pathway in menthol-induced membrane potential depolarizations, and all inhibitors were found to block the effect of menthol. Conclusions: These results suggest that menthol-induced membrane potential depolarizations occur in a G-protein-, Ca 2+ -, Rho-kinase-, COX-, and thromboxane A 2 -dependent manner via TRPA1 receptor in cultured ICCs in murine small intestine. The study shows ICCs are targeted by menthol and that this interaction can affect intestinal motility.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom