Radiation Dose Features and Solid Cancer Induction in Pediatric Computed Tomography
Author(s) -
Ernest K. J. Pauwels,
Michel Bourguig
Publication year - 2012
Publication title -
medical principles and practice
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 45
eISSN - 1423-0151
pISSN - 1011-7571
DOI - 10.1159/000337404
Subject(s) - medicine , ionizing radiation , computed tomography , context (archaeology) , medical physics , radiation exposure , radiology , cancer , life expectancy , nuclear medicine , environmental health , irradiation , paleontology , population , physics , biology , nuclear physics
Over the past two decades technical advances and improvements have made computed tomography (CT) a valuable and essential tool in the array of diagnostic imaging modalities. CT uses ionizing radiation (X-rays) which may damage DNA and increase the risk of carcinogenesis. This is especially pertinent in pediatric CT as children are more radiosensitive and have a longer life expectancy than adults. The purpose of this paper is to review and elucidate the potential harmful effects of ionizing radiation in terms of solid cancer induction from pediatric CT scanning. In the light of scientific and technical developments, we will also discuss the possible strategies and ongoing efforts to reduce CT radiation exposure in pediatric patients. In this context, we will not ignore the fact that a well-justified CT scan may exceed its risk and have a favorable impact.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom