Neuronal Functions of Activators of G Protein Signaling
Author(s) -
ManKit Tse,
Yung Hou Wong
Publication year - 2012
Publication title -
neurosignals
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.755
H-Index - 67
eISSN - 1424-8638
pISSN - 1424-862X
DOI - 10.1159/000337263
Subject(s) - g protein coupled receptor , signal transduction , g protein , activator (genetics) , microbiology and biotechnology , biology , receptor , neuroscience , genetics
G protein-coupled receptors (GPCRs) are one of the most important gateways for signal transduction across the plasma membrane. Over the past decade, several classes of alternative regulators of G protein signaling have been identified and reported to activate the G proteins independent of the GPCRs. One group of such regulators is the activator of G protein signaling (AGS) family which comprises of AGS1-10. They have entirely different activation mechanisms for G proteins as compared to the classic model of GPCR-mediated signaling and confer upon cells new avenues of signal transduction. As GPCRs are widely expressed in our nervous system, it is believed that the AGS family plays a major role in modulating the G protein signaling in neurons. In this article, we will review the current knowledge on AGS proteins in relation to their potential roles in neuronal regulations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom