Sensory and Motor Characterization in the Postnatal Valproate Rat Model of Autism
Author(s) -
Stacey Reynolds,
Alexandre Millette,
Darragh P. Devine
Publication year - 2012
Publication title -
developmental neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.893
H-Index - 82
eISSN - 1421-9859
pISSN - 0378-5866
DOI - 10.1159/000336646
Subject(s) - sensory gating , autism , psychology , sensory system , valproic acid , neuroscience , audiology , moro reflex , sensory processing , medicine , developmental psychology , epilepsy , reflex , gating
Although autism is diagnosed according to three core features of social deficits, communication impairments, and repetitive or stereotyped behaviors, other behavioral features such as sensory and motor impairments are present in more than 70% of individuals with autism spectrum disorders (ASD). Exposure of rat pups to the teratogen valproate during sensitive periods of brain development has been shown to elicit behavioral features associated with autism diagnosis and has been proposed as a valid animal model of the disorder. The purpose of this study was to characterize sensory and motor performance in rats postnatally treated with valproate. Thirty-four rat pups were injected with either valproate (150 mg/kg) or saline on postnatal days 6-12. Auditory and tactile startle as well as auditory sensory gating was assessed during both the juvenile and adolescent stages of development; motor testing was conducted during late adolescence and included a sunflower seed eating task and a vermicelli handling task. Valproate-treated rats were underresponsive to auditory stimuli, showed deficits in auditory sensory gating, and demonstrated impairments in motor speed and performance. These findings suggest that postnatal valproate treatment elicits sensory and motor features often seen in individuals with ASD. Further, the hyposensitivity seen in postnatally valproate-treated rats contrasted with hypersensitivity previously reported in prenatally valproate-exposed rats. This suggests that timing of teratogenic exposure during early brain development may be important to consider when investigating the neurobiological basis of sensorimotor impairments in ASD.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom