z-logo
open-access-imgOpen Access
Potential Role of the Amelogenin N-Terminus in the Regulation of Calcium Phosphate Formation in vitro
Author(s) -
Elvire Le Norcy,
Seo Young Kwak,
Felicitas B. Bidlack,
Elia Beniash,
Yasuo Yamakoshi,
James P. Simmer,
H.C. Margolis
Publication year - 2011
Publication title -
cells tissues organs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.662
H-Index - 82
ISSN - 1422-6405
DOI - 10.1159/000324827
Subject(s) - amelogenin , amorphous calcium phosphate , mineralization (soil science) , chemistry , biomineralization , in vitro , calcium , phosphate , enamel paint , biophysics , tooth enamel , crystallography , biochemistry , materials science , chemical engineering , gene , biology , organic chemistry , nitrogen , engineering , composite material
N-terminal and C-terminal (CT) domains of amelogenin have been shown to be essential for proper enamel formation. Recent studies have also suggested that although the C-terminus plays an apparent role in protein-mineral interactions, other amelogenin structural domains are involved. The objective was to explore the role of the amelogenin N-terminus in the regulation of calcium phosphate formation in vitro. Spontaneous mineralization studies were carried out using the phosphorylated (+P) and nonphosphorylated (-P) N-terminus of the leucine-rich amelogenin peptide (LRAP) that lacks the hydrophilic CT domain. Mineralization progress was monitored via changes in solution pH. Mineral phases formed were characterized using TEM, selected area electron diffraction, and FT-IR. In controls, amorphous calcium phosphate was initially formed and subsequently transformed to randomly oriented hydroxyapatite (HA) plate-like crystals. In contrast to the control, LRAP(+P)-CT stabilized ACP formation for >1 day, while LRAP(-P)-CT accelerated the transformation of ACP to HA but had little effect on crystal shape or orientation. In conclusion, the N-terminal domain found in LRAP, as in amelogenins, appears to have the capacity to interact with forming calcium phosphate mineral phases. Results suggest that the N-terminal domain of amelogenin may play a direct role in early stages of enamel formation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom