Comparative Neurobiology of Feeding in the Opisthobranch Sea Slug, <i>Aplysia</i>, and the Pulmonate Snail, <i>Helisoma</i>: Evolutionary Considerations
Author(s) -
Margaret M. Wentzell,
Clarissa MartínezRubio,
Mark W. Miller,
A. D. Murphy
Publication year - 2009
Publication title -
brain behavior and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 77
eISSN - 1421-9743
pISSN - 0006-8977
DOI - 10.1159/000258668
Subject(s) - aplysia , biology , gastropoda , snail , neuroscience , fmrfamide , anatomy , zoology , ecology , genetics , neuropeptide , receptor
The motor systems that generate feeding-related behaviors of gastropod mollusks provide exceptional opportunities for increasing our understanding of neural homologies and the evolution of neural networks. This report examines the neural control of feeding in Helisoma trivolvis, a pulmonate snail that ingests food by rasping or scraping material from the substrate, and Aplysia californica, an opisthobranch sea slug that feeds by using a grasping or seizing motion. Two classes of neurons that are present in the buccal ganglia of both species are considered: (1) clusters of peptidergic mechanoafferent cells that transmit sensory information from the tongue-like radula/odontophore complex to the central motor circuit; and (2) sets of octopamine-immunoreactive interneurons that are intrinsic to the feeding network. We review evidence that suggests homology of these cell types and propose that their roles have been largely conserved in the control of food-scraping and food-grasping consummatory behaviors. We also consider significant differences in the feeding systems of Aplysia and Helisoma that are associated with the existence of radular closure in Aplysia, an action that does not occur in Helisoma. It is hypothesized that a major adaptation in the innervation patterns of analogous, possibly homologous muscles could distinguish the food-scraping versus food-grasping species. It appears that although core CPG elements have been largely conserved in this system, the neuromuscular elements that they regulate have been more evolutionarily labile.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom