Phosphatidylinositol 3-Kinase Regulates Macrophage Responses to Double-Stranded RNA and Encephalomyocarditis Virus
Author(s) -
Wieke Freudenburg,
Jason M. Moran,
Nathan H. Lents,
Joseph J. Baldassare,
R. Mark L. Buller,
John A. Corbett
Publication year - 2009
Publication title -
journal of innate immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.078
H-Index - 64
eISSN - 1662-8128
pISSN - 1662-811X
DOI - 10.1159/000243785
Subject(s) - pi3k/akt/mtor pathway , phosphatidylinositol , macrophage , proinflammatory cytokine , biology , protein kinase b , virus , apoptosis , nitric oxide synthase , kinase , inflammation , signal transduction , microbiology and biotechnology , virology , nitric oxide , immunology , biochemistry , endocrinology , in vitro
Virus infection of macrophages stimulates the expression of proinflammatory and antiviral genes interleukin-1 (IL-1), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In this study, we show that phosphatidylinositol 3-kinase (PI3K) is required for the inflammatory response of macrophages to virus infection. When macrophages are infected with encephalomyocarditis virus (EMCV) there is a rapid and transient activation of PI3K and phosphorylation of its downstream target Akt. Inhibitors of PI3K attenuate EMCV- and double-stranded RNA-induced iNOS, COX-2 and IL-1 beta expression in RAW264.7 cells and mouse peritoneal macrophages. The attenuation of inflammatory gene expression in response to PI3K inhibition correlates with the induction of macrophage apoptosis. The morphology of macrophages shifts from activation in response to EMCV infection to apoptosis in the cells treated with PI3K inhibitors and EMCV. These morphological changes are accompanied by the activation of caspase-3. These findings suggest that PI3K plays a central role in the regulation of macrophage responses to EMCV infection. When PI3K is activated, it participates in the regulation of inflammatory gene expression; however, if PI3K is inhibited macrophages are unable to mount an inflammatory antiviral response and die by apoptosis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom