z-logo
open-access-imgOpen Access
Real-Time Monitoring of <i>Streptococcus mutans</i> Biofilm Formation Using a Quartz Crystal Microbalance
Author(s) -
Kawai Tam,
N. Kinsinger,
Perla Ayala,
F. Qi,
Wenyuan Shi,
Nosang V. Myung
Publication year - 2007
Publication title -
caries research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.355
H-Index - 100
eISSN - 1421-976X
pISSN - 0008-6568
DOI - 10.1159/000108321
Subject(s) - biofilm , streptococcus mutans , quartz crystal microbalance , chemistry , sucrose , microbiology and biotechnology , biochemistry , bacteria , biology , genetics , organic chemistry , adsorption
The ability of Streptococcus mutans, a well-known etiological agent in dental caries, to attach and form a biofilm is an important key to its virulence. The effects of various environmental factors (i.e. sucrose concentration, flow rate and temperature as well as genetic manipulations) on the capability of S. mutans (UA 140) to attach, form and detach were monitored in situ using quartz crystal microbalance. The biofilm growth rate was much slower than that of planktonic growth. Greater availability of sucrose contributed to biofilms with less lag time, lower doubling times and earlier detachment. Flow rate experiments showed that as the shear stress was reduced, the maximum mass accumulated also decreased. However, the detachment process was independent of shear force, perhaps indicative of quorum sensing. Increasing the incubation temperature from 37 to 40 degrees C extended the lag period and inhibited the ability of the biofilm to attach readily. Absence of either the ciaH, luxS, gtfB or gtfC genes also greatly affected the ability of the S. mutans to adhere to a surface in comparison to the wild type. Quartz crystal microbalance results indicate that the gtfC gene possibly has a greater contribution to biofilm attachment than the gtfB gene, that the presence of the luxS gene is critical for attachment and that the ciaH gene primarily affects the initial reversible attachment of the biofilm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom