BCR/ABL and Other Kinases from Chronic Myeloproliferative Disorders Stimulate Single-Strand Annealing, an Unfaithful DNA Double-Strand Break Repair
Author(s) -
Kimberly Cramer,
Margaret Nieborowska-Skorska,
Mateusz Koptyra,
Artur Słupianek,
Emir Tyrone P. Penserga,
Connie J. Eaves,
Walter E. Aulitzky,
Tomasz Skórski
Publication year - 2008
Publication title -
cancer research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.103
H-Index - 449
eISSN - 1538-7445
pISSN - 0008-5472
DOI - 10.1158/0008-5472.can-08-1101
Subject(s) - biology , cancer research , philadelphia chromosome , imatinib mesylate , chronic myelogenous leukemia , genome instability , tyrosine kinase , progenitor cell , abl , dna damage , microbiology and biotechnology , stem cell , leukemia , imatinib , myeloid leukemia , signal transduction , genetics , dna , chromosomal translocation , gene
Myeloproliferative disorders (MPD) are stem cell-derived clonal diseases arising as a consequence of acquired aberrations in c-ABL, Janus-activated kinase 2 (JAK2), and platelet-derived growth factor receptor (PDGFR) that generate oncogenic fusion tyrosine kinases (FTK), including BCR/ABL, TEL/ABL, TEL/JAK2, and TEL/PDGFbetaR. Here, we show that FTKs stimulate the formation of reactive oxygen species and DNA double-strand breaks (DSB) both in hematopoietic cell lines and in CD34(+) leukemic stem/progenitor cells from patients with chronic myelogenous leukemia (CML). Single-strand annealing (SSA) represents a relatively rare but very unfaithful DSB repair mechanism causing chromosomal aberrations. Using a specific reporter cassette integrated into genomic DNA, we found that BCR/ABL and other FTKs stimulated SSA activity. Imatinib-mediated inhibition of BCR/ABL abrogated this effect, implicating a kinase-dependent mechanism. Y253F, E255K, T315I, and H396P mutants of BCR/ABL that confer imatinib resistance also stimulated SSA. Increased expression of either nonmutated or mutated BCR/ABL kinase, as is typical of blast phase cells and very primitive chronic phase CML cells, was associated with higher SSA activity. BCR/ABL-mediated stimulation of SSA was accompanied by enhanced nuclear colocalization of RAD52 and ERCC1, which play a key role in the repair. Taken together, these findings suggest a role of FTKs in causing disease progression in MPDs by inducing chromosomal instability through the production of DSBs and stimulation of SSA repair.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom