z-logo
open-access-imgOpen Access
Texture Evolution During the Drawing of Low Carbon Steel
Author(s) -
Christophe Schuman,
Claude Esling,
M.J. Philippe,
M. Hergesheimer,
M. Jallon,
A. Lefort
Publication year - 1994
Publication title -
texture stress and microstructure
Language(s) - English
Resource type - Journals
eISSN - 1687-5400
pISSN - 1687-5397
DOI - 10.1155/tsm.22.261
Subject(s) - texture (cosmology) , materials science , carbon fibers , metallurgy , composite material , artificial intelligence , computer science , composite number , image (mathematics)
This study deals with the texture evolution during drawing of interstitial-free low carbon steels underdifferent conditions to study the possible influence of the drawing direction, deformation rate and metal/die friction coefficient. The drawing has been carried out without intermediary annealing, with constant die angle and deformation rate per pass. In all cases, a〈 110 〉fibre texture has been observed at the early stage of deformation (a few percents). The drawing direction, whether alternate or unidirectional, has little effect on texture. Slight differences only in the intensity of peaks on pole figures (PFs) are noted. Alternate drawing leads to higher drawing limits. The grain size affects both the texture and the mechanical properties, which are improved by fine grains. For industrial drawing, i.e. at a high deformation rate, no texture gradient has been clearly observed. Nevertheless, slight differences have been noted in the PF intensities, with generally a slightly sharper texture in the core, compared to the surface. The microhardness tests show no hardness gradient. In slow drawing (low deformation rate), there is a weak texture gradient which disappears at larger deformation. In order to visualize the influence of the metal/die friction, we used a material covered with copper. Results show that at a given reduction rate, the material covered with copper shows peak intensities on the (110) PF which are half these of a material drawn under conventional conditions. The drawing textures of BCC materials always presenta〈 110 〉fibre texture. A modeling of the texture evolution during drawing has also been carried outusing the Taylor model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom