z-logo
open-access-imgOpen Access
Stability implications on the asymptotic behavior of nonlinear systems
Author(s) -
Kuo-Liang Chiou
Publication year - 1982
Publication title -
international journal of mathematics and mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 39
eISSN - 1687-0425
pISSN - 0161-1712
DOI - 10.1155/s0161171282000106
Subject(s) - mathematics , nonlinear system , stability (learning theory) , combinatorics , existential quantification , pure mathematics , discrete mathematics , physics , computer science , quantum mechanics , machine learning
In this paper we generalize Bownds' Theorems (1) to the systems dY(t)dt=A(t)Y(t) and dX(t)dt=A(t)X(t)+F(t,X(t)). Moreover we also show that there always exists a solution X(t) of dXdt=A(t)X+B(t) for which limt→∞sup‖X(t)‖>o(=∞) if there exists a solution Y(t) for which limt→∞sup‖Y(t)‖>o(=∞)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom