CREB Activation Mediates Plasticity in Cultured Hippocampal Neurons
Author(s) -
Menahem Segal,
Declan Murphy
Publication year - 1998
Publication title -
neural plasticity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.288
H-Index - 68
eISSN - 2090-5904
pISSN - 1687-5443
DOI - 10.1155/np.1998.1
Subject(s) - creb , long term potentiation , dendritic spine , hippocampal formation , neuroscience , phosphorylation , microbiology and biotechnology , chemistry , neuroplasticity , cyclic amp response element binding protein , synaptic plasticity , bicuculline , protein kinase a , neuronal memory allocation , biology , metaplasticity , transcription factor , receptor , biochemistry , antagonist , gene
Activation of cyclic AMP dependent kinase is believed to mediate slow onset, long-term potentiation (LTP) in central neurons. Cyclic-AMP activates a cascade of molecular events leading to phosphorylation of the nuclear cAMP responsive element binding protein (pCREB). Whereas a variety of stimuli lead to activation of CREB, the molecular processes downstream of CREB, which may be relevant to neuronal plasticity, are yet largely unknown. We have recently found that following exposure to estradiol, pCREB mediates the large increase in dendritic spine density in cultured rat hippocampal neurons. We now extend these observations to include other stimuli, such as bicuculline, that cause the formation of new dendritic spines. Such stimuli share with estradiol the same mechanism of action in that both require activity-dependent CREB phosphorylation. Our observations suggest that CREB phosphorylation is a necessary, but perhaps not sufficient, step in the process leading to the generation of new dendritic spines and perhaps to functional plasticity as well.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom