Platinum (II) Compounds With Antitumor Activity Studied by Molecular Mechanics
Author(s) -
Natasha Trendafilova,
Ivelina Georgieva,
George St. Nikolov
Publication year - 1998
Publication title -
metal-based drugs
Language(s) - English
Resource type - Journals
ISSN - 0793-0291
DOI - 10.1155/mbd.1998.91
Subject(s) - molecular mechanics , platinum , chemistry , materials science , computational chemistry , molecular dynamics , biochemistry , catalysis
A SERIES OF PT(LL) COMPLEXES WITH ANTITUMOR PROPERTIES: [1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamine]PtL(2) (meso-1-PtL(2)) and [erythro-1-(2,6-dichloro-4-hydroxyphenyl)-2-(2-halo-4-hydroxyphenyl)ethylenediamine]PtL(2), [2L=2Cl-,2I-,SO(4) (2)-; halo = F (erythro-8-PtL(2)),halo = Cl (erythro-9-PtL(2))] has been modelled by molecular mechanics (MM). The MM calculations were carried out for different isomers and ligand conformations meso-delta, meso-lambda, d,l-delta, d,I-lambda. The compounds with the lowest MM energies have the same geometries as those obtained by X-ray analysis. The calculated MMX energy orders: meso-1-PtL(2) < erythro-9-PtL(2) < erythro-8-PtL(2) for L=I-, Cl- and SO(4) (2-) are reverse to the known antitumor activity order - the lowest energy complex (the most stable one)is the one with the highest estrogen activity (meso-1-PtL(2)). The type of the leaving group (L) does not alter the energy order, which is in agreement with the biological experiments that show a slight dependence of the estrogen properties on the leaving group type.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom