Objective Clustering of Proteins Based on Subcellular Location Patterns
Author(s) -
Xiang Chen,
Robert F. Murphy
Publication year - 2005
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/jbb.2005.87
Subject(s) - computer science , cluster analysis , set (abstract data type) , pattern recognition (psychology) , protein subcellular localization prediction , feature (linguistics) , artificial intelligence , protein function prediction , data mining , computational biology , biology , genetics , linguistics , philosophy , protein function , gene , programming language
The goal of proteomics is the complete characterization of all proteins. Efforts to characterize subcellular location have been limited to assigning proteins to general categories of organelles. We have previously designed numerical features to describe location patterns in microscope images and developed automated classifiers that distinguish major subcellular patterns with high accuracy (including patterns not distinguishable by visual examination). The results suggest the feasibility of automatically determining which proteins share a single location pattern in a given cell type. We describe an automated method that selects the best feature set to describe images for a given collection of proteins and constructs an effective partitioning of the proteins by location. An example for a limited protein set is presented. As additional data become available, this approach can produce for the first time an objective systematics for protein location and provide an important starting point for discovering sequence motifs that determine localization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom