Impact of Tumor‐Derived CCL2 on Macrophage Effector Function
Author(s) -
M. S. Brault,
Robert A. Kurt
Publication year - 2005
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/jbb.2005.37
Subject(s) - ccl2 , chemokine , macrophage , monocyte , cancer research , ccl5 , cytokine , biology , immune system , microbiology and biotechnology , chemistry , immunology , in vitro , t cell , biochemistry , il 2 receptor
Monocyte chemoattractant protein-1 (MCP-1, CCL2) is produced by many different types of cells. In the current investigation, the effect of tumor-derived CCL2 on macrophages was evaluated to determine the extent to which this chemokine influenced the innate immune response to cancer. To do this, we used the 4T1 murine mammary carcinoma cell line that constitutively expresses CCL2 and generated 4T1 expressing an antisense CCL2 transcript. The antisense-CCL2-expressing 4T1 produced no detectable CCL2. Macrophages from female BALB/c mice were exposed to supernatants from these tumor cells. The results showed that tumor-derived CCL2 was capable of modulating cytokine gene expression but not protein production in resting, activated, and tumor-associated macrophages. In addition, tumor-derived CCL2 did not affect phagocytic activity, nitric oxide production, or cytolytic activity of the macrophages. Overall, these data suggest that tumor-derived CCL2 does not directly influence macrophage-mediated antitumor activity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom