z-logo
open-access-imgOpen Access
Multiclass Cancer Classification by Using Fuzzy Support Vector Machine and Binary Decision Tree With Gene Selection
Author(s) -
Yong Mao,
Xiaobo Zhou,
Daoying Pi,
Youxian Sun,
Stephen T.C. Wong
Publication year - 2005
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/jbb.2005.160
Subject(s) - support vector machine , feature selection , artificial intelligence , multiclass classification , pattern recognition (psychology) , computer science , binary tree , binary classification , decision tree , feature (linguistics) , machine learning , selection (genetic algorithm) , structured support vector machine , data mining , algorithm , linguistics , philosophy
We investigate the problems of multiclass cancer classification with gene selection from gene expression data. Two different constructed multiclass classifiers with gene selection are proposed, which are fuzzy support vector machine (FSVM) with gene selection and binary classification tree based on SVM with gene selection. Using F test and recursive feature elimination based on SVM as gene selection methods, binary classification tree based on SVM with F test, binary classification tree based on SVM with recursive feature elimination based on SVM, and FSVM with recursive feature elimination based on SVM are tested in our experiments. To accelerate computation, preselecting the strongest genes is also used. The proposed techniques are applied to analyze breast cancer data, small round blue-cell tumors, and acute leukemia data. Compared to existing multiclass cancer classifiers and binary classification tree based on SVM with F test or binary classification tree based on SVM with recursive feature elimination based on SVM mentioned in this paper, FSVM based on recursive feature elimination based on SVM can find most important genes that affect certain types of cancer with high recognition accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom