z-logo
open-access-imgOpen Access
Gold Binding by Native and Chemically Modified Hops Biomasses
Author(s) -
Martha L. López,
Jorge L. GardeaTorresdey,
Jose R. PeraltaVidea,
Guadalupe de la Rosa,
V. Armendáriz,
Ismael Herrera,
Horacio Troiani,
John A. Henning
Publication year - 2005
Publication title -
bioinorganic chemistry and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.865
H-Index - 35
eISSN - 1565-3633
pISSN - 1687-479X
DOI - 10.1155/bca.2005.29
Subject(s) - humulus lupulus , chemistry , biomass (ecology) , hydrolysis , effluent , chromatography , pulp and paper industry , environmental chemistry , food science , organic chemistry , environmental science , environmental engineering , agronomy , pepper , biology , engineering
Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass (Humulus lupulus) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding at pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom