A degree theory for compact perturbations of properC 1 Fredholm mappings of index0
Author(s) -
Patrick J. Rabier,
Mary F. Salter
Publication year - 2005
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/aaa.2005.707
Subject(s) - algorithm , mathematics , artificial intelligence , computer science
We construct a degree for mappings of the form F+K betweenBanach spaces, where F is C1 Fredholm of index0 and K is compact. This degree generalizesboth the Leray-Schauder degree when F=I and the degree forC1 Fredholm mappings of index 0 when K=0. To exemplifythe use of this degree, we prove the “invariance-of-domain”property when F+K is one-to-one and a generalization ofRabinowitz's global bifurcation theorem for equationsF(λ,x)+K(λ,x)=0
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom