z-logo
open-access-imgOpen Access
Small sets in convex geometry and formal independence over ZFC
Author(s) -
Menachem Kojman
Publication year - 2005
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/aaa.2005.469
Subject(s) - algorithm , mathematics , convexity , regular polygon , artificial intelligence , computer science , combinatorics , geometry , financial economics , economics
To each closed subset S of a finite-dimensional Euclidean space corresponds a σ-ideal of sets  (S) which is σ-generated over S by the convex subsets of S. The set-theoretic properties of this ideal hold geometric information about the set. We discuss the relation of reducibility between convexity ideals and the connections between convexity ideals and other types of ideals, such as the ideals which are generated over squares of Polish space by graphs and inverses of graphs of continuous self-maps, or Ramsey ideals, which are generated over Polish spaces by the homogeneous sets with respect to some continuous pair coloring. We also attempt to present to nonspecialists the set-theoretic methods for dealing with formal independence as a means of geometric investigations

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom