Resiliency Assessment of Power Systems Using Deep Reinforcement Learning
Author(s) -
Mariam Ibrahim,
Ahmad Alsheikh,
Ruba Elhafiz
Publication year - 2022
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2022/2017366
Subject(s) - blackout , reinforcement learning , computer science , resilience (materials science) , electric power system , artificial intelligence , power (physics) , reliability engineering , reinforcement , machine learning , engineering , physics , structural engineering , quantum mechanics , thermodynamics
Evaluating the resiliency of power systems against abnormal operational conditions is crucial for adapting effective actions in planning and operation. This paper introduces the level-of-resilience (LoR) measure to assess power system resiliency in terms of the minimum number of faults needed to produce a system outage (blackout) under sequential topology attacks. Four deep reinforcement learning (DRL)-based agents: deep Q-network (DQN), double DQN, the REINFORCE (Monte-Carlo policy gradient), and REINFORCE with baseline are used to determine the LoR. In this paper, three case studies based on IEEE 6-bus test system are investigated. The results demonstrate that the double DQN network agent achieved the highest success rate, and it was the fastest among the other agents. Thus, it can be an efficient agent for resiliency evaluation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom