A Study of Nil Ideals and Kothe’s Conjecture in Neutrosophic Rings
Author(s) -
Mohammad Abobala
Publication year - 2021
Publication title -
international journal of mathematics and mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 39
eISSN - 1687-0425
pISSN - 0161-1712
DOI - 10.1155/2021/9999707
Subject(s) - mathematics , conjecture , ideal (ethics) , ring (chemistry) , pure mathematics , polynomial ring , equivalence (formal languages) , combinatorics , discrete mathematics , polynomial , mathematical analysis , law , chemistry , organic chemistry , political science
#e aim of this study is to determine the necessary and sufficient condition for any AH subset to be a full ideal in a neutrosophic ring R(I) and to be a nil ideal too. Also, this work shows the equivalence between Kothe’s conjecture in classical rings and corresponding neutrosophic rings, i.e., it proves that Kothe’s conjecture is true in the neutrosophic ring R(I) if and only if it is true in the corresponding classical ring R.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom