Constructing Scenarios’ Network-of-Flight Conflict in Approach of Intersecting Runway
Author(s) -
Ming Cheng,
Yixuan Li,
Xiaolian Han
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/9999060
Subject(s) - centrality , runway , beijing , closeness , computer science , operations research , mechanism (biology) , path (computing) , sorting , object (grammar) , transport engineering , simulation , engineering , artificial intelligence , computer network , geography , mathematics , algorithm , mathematical analysis , philosophy , archaeology , epistemology , combinatorics , china
For studying the mechanism of flight conflict in approach of the intersecting runway, this paper applies the case study, scenario construction, and complex network, analyzes the operational risks of the intersecting runway, and researches the general rule of flight conflict. We constructed a network model of scenario evolution of flight conflict with selecting Beijing Daxing International Airport as the research object, which included 169 nodes and 263 edges. It proposed path evolution and verified the effectiveness of this network. We analyzed the degree centrality, median centrality, and closeness centrality of the network, and the results showed that the comprehensive value of 5 nodes is high, including go-around (V2), conflict resolution (C22), the warning light of aft cargo dJor was extinguished (F12), suspend subsequent take-off operations (F5), and keeping visual flying (C26). The results show that this method provides a new research way for the control strategy of chain breakage and the mechanism of scenario evolution of flight conflict.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom