z-logo
open-access-imgOpen Access
A Parallel Attribute Reduction Method Based on Classification
Author(s) -
Deguang Li,
Zhanyou Cui
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/9989471
Subject(s) - reduction (mathematics) , computer science , rough set , domain (mathematical analysis) , set (abstract data type) , parallel processing , data mining , attribute domain , divide and conquer algorithms , algorithm , artificial intelligence , pattern recognition (psychology) , parallel computing , mathematics , mathematical analysis , geometry , programming language
Parallel processing as a method to improve computer performance has become a development trend. Based on rough set theory and divide-and-conquer idea of knowledge reduction, this paper proposes a classification method that supports parallel attribute reduction processing, the method makes the relative positive domain which needs to be calculated repeatedly independent, and the independent relative positive domain calculation could be processed in parallel; thus, attribute reduction could be handled in parallel based on this classification method. Finally, the proposed algorithm and the traditional algorithm are analyzed and compared by experiments, and the results show that the proposed method in this paper has more advantages in time efficiency, which proves that the method could improve the processing efficiency of attribute reduction and makes it more suitable for massive data sets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom