z-logo
open-access-imgOpen Access
EGAT: Extended Graph Attention Network for Pedestrian Trajectory Prediction
Author(s) -
Wei Kong,
Yun Liu,
Hui Li,
Chuanxu Wang
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/9985401
Subject(s) - pedestrian , computer science , trajectory , graph , artificial intelligence , futures studies , field (mathematics) , residual , machine learning , transport engineering , algorithm , mathematics , theoretical computer science , engineering , astronomy , pure mathematics , physics
To improve foresight and make correct judgment in advance, pedestrian trajectory prediction has a wide range of application values in autonomous driving, robot interaction, and safety monitoring. However, most of the existing methods only focus on the interaction of local pedestrians according to distance, ignoring the influence of far pedestrians; the range of network input (receptive field) is small. In this paper, an extended graph attention network (EGAT) is proposed to increase receptive field, which focuses not only on local pedestrians, but also on those who are far away, to further strengthen pedestrian interaction. In the temporal domain, TSG-LSTM (TS-LSTM and TG-LSTM) and P-LSTM are proposed based on LSTM to enhance information transmission by residual connection. Compared with state-of-the-art methods, the model EGAT achieves excellent performance on both ETH and UCY public datasets and generates more reliable trajectories.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom