z-logo
open-access-imgOpen Access
Multiobjective Economic Optimal Dispatch for the Island Isolated Microgrid under Uncertainty Based on Interval Optimization
Author(s) -
Zhang Guo-ping,
Weijun Wang,
Jie Du,
Haoyun Sheng
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9983104
Subject(s) - microgrid , diesel generator , mathematical optimization , interval (graph theory) , renewable energy , particle swarm optimization , economic dispatch , multi objective optimization , optimization problem , computer science , generator (circuit theory) , wind power , engineering , electric power system , diesel fuel , power (physics) , automotive engineering , mathematics , physics , combinatorics , quantum mechanics , electrical engineering
In order to analyse the impact of renewable generation and load uncertainties on the economic operation optimization of the island microgrid, a multiobjective economic optimal dispatch model under uncertainty based on interval optimization is proposed in this paper. The mathematical model of distributed generation and the prediction model of wind speed and wave generation are established. The uncertainties of renewable generation and load are described by the interval mathematical method. On this basis, the interval multiobjective optimal dispatch model is presented. For the “battery disgusting” users on the island, the battery cost is regarded as a separate optimization objective, and a multiobjective optimization objective function to minimize the economic cost, battery cost, and pollution emission of the island microgrid is discussed. An island microgrid, composed of wind turbine, photovoltaic, wave energy generation, diesel generator, and energy storage system, is chosen as a case study. The NSGA-II algorithm is applied to solve the multiobjective optimal problem. The results for deterministic forecast data and load are analysed, and the optimal operation scheme is obtained by the improved multiobjective grey target decision-making method. The influence of renewable generation fluctuations ±10%, ±20%, and ±30% and the load fluctuations ±10% and ±20% on island microgrid operation optimization is discussed in detail, respectively. The relevant research results can provide a reference for formulating the operating scheme of the island microgrid.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom